skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Kunisky, Dmitriy"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Given a random n ร— n symmetric matrix ๐‘พ drawn from the Gaussian orthogonal ensemble (GOE), we consider the problem of certifying an upper bound on the maximum value of the quadratic form ๐’™^โŠค ๐‘พ ๐’™ over all vectors ๐’™ in a constraint set ๐’ฎ โŠ‚ โ„โฟ. For a certain class of normalized constraint sets we show that, conditional on a certain complexity-theoretic conjecture, no polynomial-time algorithm can certify a better upper bound than the largest eigenvalue of ๐‘พ. A notable special case included in our results is the hypercube ๐’ฎ = {ยฑ1/โˆšn}โฟ, which corresponds to the problem of certifying bounds on the Hamiltonian of the Sherrington-Kirkpatrick spin glass model from statistical physics. Our results suggest a striking gap between optimization and certification for this problem. Our proof proceeds in two steps. First, we give a reduction from the detection problem in the negatively-spiked Wishart model to the above certification problem. We then give evidence that this Wishart detection problem is computationally hard below the classical spectral threshold, by showing that no low-degree polynomial can (in expectation) distinguish the spiked and unspiked models. This method for predicting computational thresholds was proposed in a sequence of recent works on the sum-of-squares hierarchy, and is conjectured to be correct for a large class of problems. Our proof can be seen as constructing a distribution over symmetric matrices that appears computationally indistinguishable from the GOE, yet is supported on matrices whose maximum quadratic form over ๐’™ โˆˆ ๐’ฎ is much larger than that of a GOE matrix. 
    more » « less
  2. null (Ed.)
    Equiangular tight frames (ETFs) may be used to construct examples of feasible points for semidefinite programs arising in sum-of-squares (SOS) optimization. We show how generalizing the calculations in a recent work of the authorsโ€™ that explored this connection also yields new bounds on the sparsity of (both real and complex) ETFs. One corollary shows that Steiner ETFs corresponding to finite projective planes are optimally sparse in the sense of achieving tightness in a matrix inequality controlling overlaps between sparsity patterns of distinct rows of the synthesis matrix. We also formulate several natural open problems concerning further generalizations of our technique. 
    more » « less